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Abstract. To study the Coulomb drag resistivity of barrier-coupled ZD-ID and 2D-2D 
systems as well as the transition behaviour between them. we suggest investigation of a system 
which is composed of a couple of bmier-sepmted cylindrical S quantum wells (CDWs) with 
a common cylindrical symmetry axis. We find that for coupled 2D-ID CDWs, the momentum 
relaxation me, r;'. is approximately proportional to T'. while for coupled 2D-2D CDWs, 
it is proportional to Tz which is in accord with the characteristic behaviour of the momentum 
relaxation rate in coupled ZD-2D planes. In the transition region from coupled 2D-ID to 
2D-2D CDWs, 7;' is prapartiond to Tn with n reduced from 4 to 2 gradually. In addition, 
quite unlike the approximate d-2.4dependence of momentum relaxdon rate divided by TAx 
in coupled 2D-2D planes, due to the quantization of the circular motion round a cylindrical 
symmetry axis, for coupled 2D-ID CDWs the momentum relaxation rate divided by Ti,",, is 
approximately proportional to d-3 times a nearly periodic function of d ,  while for coupled 
2D-2D CDWs, the momentum relaxation rate divide by Ti, is approximately proportional to 
d-2.4 times a nearly periodic function of d, where d is the distance between two CDWs. 

1. Introduction 

The characteristic energy dependence of the electron-electron scattering rate is due to the 
phasespace restrictions that apply to the mutual scattering of particles in a nearly degenerate 
gas. These restrictions are different for systems with different dimensionalities. In a three- 
dimensional electron gas at zero temperature, the electron-electron scattering rate l/r(c) 
depends on the electron energy E according to l / s (~)  M (E - p)', where p is the chemical 
potential. At finite temperatures this characteristic energy dependence yields relaxation rates 
that are proportional to T2. For a two-dimensional electron gas this scattering rate at zero 
temperature is proportional to (s-p)'lnlr-pl [I]. At finite temperatures the corresponding 
relaxation rates become proportional to T2 In T. In the past few years, the Coulomb drag 
problem in barrier-coupled systems has attracted considerable research interest because it 
provides a way of probing electron-electron interactions between two systems which play a 
crucial role both in basic theoretical research and experimental studies. The research results 
in this field show also that the relaxation rates between two barrier-separated systems depend 
sensitively on the dimensionality of the two systems coupled to each other. The effect has 
been considered in coupled 3D-3D, 3D-2D, 2D-2D and ID-ID systems by a number 
of different authors [2-51, but none of them have ever discussed the mutual drag between 
the 2D system and the 1D system as well as the transition behaviour of the Coulomb drag 
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from coupled 2D-2D to coupled 2D-1D and from coupled 2D-1D to coupled ID-1D 
systems. 

In a cylindrical quantum well (CQW) 16, 71, the electrons are confined in the cylindrical 
potential well with inside radius ai and outside radius a2, and are free to move in the well. 
If a, tends to a ~ ,  i.e., the electron density profile in the radial direction is a &function, the 
electron gas is confined in a cylindrical surface, and a CQW is reduced to a CDW as we 
call it from now on. In this paper we consider a barrier-coupled CDW system as shown 
schematically in figure 1 which is composed of two CDWs with a common cylindrical 
symmetry axis (i.e., the two CDWs are coaxial), of radii a and b respectively (b > a and 
b - a = d). Their length, L, tends to infinity. Such a coupled CDW model would be 
an interesting system to study because we know well that when we reduce the radius of 
a CDW, the dimensionality of its elecfxon gas changes from 2D to 1D at a critical radius 
r, which is determined by the electron area density [6-81. Therefore when we change the 
radii of both CDWs of  a coupled CDW system, we can study the Coulomb drag properties 
between 2D and 2D, 2D and ID or ID and ID electron gases, and study the transition 
behaviour between them. 

Figure 1. A schematic drawing < barrier-coupled CDW system. 

2. Drag resistivity in coupled CDWs 

After a current 12 along the direction of cylindrical symmetry axis (the z-direction) is driven 
in the outer CDW with radius b, one measures the voltage difference Vi which is induced 
in the inner CDW with radius a under the condition that no current flows in this CDW. The 
current per unit width is j z  = Izj(2nb). while the magnitude of the electric field strength, 
which prevents the electrons in the inner CDW from being dragged along by the current 
in the outer CDW, is E1 = VljZ, where Z denotes the distance between the probes used to 
measure the voltage difference. The drag resistivity is defined by 

Experimentally, El is found to be proportional to drift velocity u2 which is defined as 
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where n2 is the number of electrons per unit area in the outer CDW, while e is the elementary 
charge. The coefficient relating E1 and u2 is the drag mobility p~ which is defined by 

The mobility pD may in turn be expressed in terms of the momentum relaxation rate l/rD 
according to 

As a result, the drag resistivity, which has the dimension of a resistance, may also be written 
as 

where p* is the effective mass of conduction electrons. The theoretical calculation is aimed 
at expressing the drag resistivity p~ or the momentum relaxation rate l lrD as a function of 
temperature T and the distance d separating the two CDWs. 

3. The momentum relaxation rate 

The noninteracting single-particle ground-state energy and wave function for the electron 
with effective mass p* in the CDW with radius rO can be written as 

\U) = 10, m, k) = exp(ikz + imb){o(r) 

with If&)lz = 6(r - ro)/r and 

(7) 

The momentum relaxation rate is determined by using the linearized Boltzmann equation 
[5 ] .  The linearized collision integral in cylindrical coordinates is 

x f ~ f ~ ( l - f ~ , ) ( l - f ~ ~ ) 6 ( € 1 + € 2 - € 1 ~ - € ~ )  (8) 

where f o  is the equilibrium distribution function.  for brevity, the quantum number sets 
(0, m l ,  kl), (0, m2. kz) etc are labelled as 1, 2, . . . , and the quantities referring to the inner 
CDW (CDW 1) are labelled 1, l', and, similarly, those referring to the outer CDW (CDW 
2) are labelled 2,2'. w(l ,2;  1'. 2') determines the probability that two electrons in states 1 
and 2 will scatter to 1' and 2'. Also, we have m2, = m l  + m2 - ml, and k2~ = kl + k2 - kt, 
because of conservation of angular momentum and momentum. In terms of the momentum 
conservation, the difference between two deviation functions can be written as 

where E2 is the electric field in CDW 2, directed along the z-axis, and q is an energy- 
independent momentum relaxation time. We now multiply both sides of equation (8) by kl 
and sum over the state (ml, kl, UT) .  The term kl(kl, - kl) in the integrand can be replaced 
by -(klr - k1)2/2 due to the symmetry of the remaining part of the integrand with respect 
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to the interchange of 1 and 1‘. After completing the integration by parts on the left-hand 
side of the equation, we get 

where q is the wave-vector transfer given by q = kl, - kl 
By using the Born approximation, we get 

where e@Am(q) is the Fourier transform of the effective interaction. The expression for the 
coupled CDW system will be given in the next section. 

The intrasubband quai-two-dimensional polarizability is defined by [6]  

where S is the surface area of the CDW, Am = ml, - ml and q = klc - kl. So 

By using 
+W 

dw &(€I - 61‘ +A@) ~ ( E Z  - €2’ - Ru) (14) L S ( E 1  + €2 - E,‘ - €28) = h 

and 

f0(~)[1 - fo(c +A&)] = [fo(e) - fo(6 +hw)l/[l - exp(-hw/k~T)] (15) 
together with equations (31, (4), (13) and uz = e.czEz/p*, we may transform equation (10) 
into 

where Q = q/(2k?)), C2 = Ro/(4E7)), f l  = 2EF)/(ksT). In this paper, frequency w and 
wave vector q are reduced by 4E,?/R and 2kF’ in which E;) and k:) are the Fermi energy 
and Fermi wave vector of the inner CDW respectively. The remaining task is to cany out 
the integrations in equation (16) for several different sets of circumstances. 

4. The polarizability of a CDW 

The imaginary part of the polarizability of a CDW with radius ro at absolute zero temperature 
is [6, 71 
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where the angular quantum number m and Am are equal to 0, i l ,  k2, . . . Amo, and 
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(18) 0 - k(rO)rol m - r f  
which denotes the integral p m  of k,?’ro, and 

-H[kp)(m) - IkF)(N(m) + Q/Q)II] (19) 

in which H ( x )  is the Heaviside unit step function. The effective wave vector 

The Fermi wave vector k p ’  is determined by 

non 2 To 2 - - k(‘0lr I + Z[(k,?’r0)’ -. 11’/~ + . . . + ~ [ ( k ~ ’ r o ) ~  - @’ro12~’’2 (22) 

where no is the electron area density. Strictly speaking we should use here the finite- 
temperature expression for Im XO,~;,~. This, however, owing to the steplike structure of 
the energy dependence of Fermi equilibrium distribution function f o ,  would only affect 
the momentum relaxation rate to higher order in TIT,. We may therefore use the zero- 
temperature expression, since we are concerned with the variations not on the scale of the 
Fermi temperature, but on a much smaller temperature scale set by the distance d between 
the two CDWs. Obviously the maximum angular quantum number mo is related to radius 
ro. There is a critical radius r, which is determined by l/(znh/z). For example, in the case 
where no = 1.5 x 10” cm-’, r, Y 82.187 A. When ro < r,, m0 = 0, the electrons in the 
CDW reduce to a one-dimensional electron gas [8, 91. 

In terms of the Green’s function ‘in cylindrical coordinates 

The Fourier transform of the effective interaction can be obtained by solving Poisson’s 
equation for the potential [5] 
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2k('O) 
2kP)ro +....+ f ro 

[(kP'ro)2 - 12]'/' [(kp'ro)2 - (mo)2] 
(26) 

- 2 e 2 ~ '  - 
rCXfr2(kp'rO) 

To get this equation, we have used the expression for no given by equation (22). 

5. Results and discussion 

We define 

r(Q, Q) = X I m  x ~ . o : ~ ( Q ,  A m ,  Q)h Xo.o:b(Q,  Am, Q) 
Am 

= Im x$. (Qi Am, Q) Im x$$(Q, Am,  Q). (27) 
Am m m' 

By using the step-like function behaviour of the Heaviside unit step function, it can be 
proved from equation (19) that 

where 
Q? = I[Q'+(MZ)']AG?Y;~ (29) 

y; = k p ) ( m ) / k F )  (30) 
and 

in which the effective wave vector, k p ) ( m ) ,  is defined by equation (20) and 

(m + Am)2 - mz MZ=' 2kY)ro 

Then r(Q. Q) is an %independent constant in the region of Q- e Q e Q+ and is zero 
otherwise. The integration over Q in equation (16) may be carried out analytically to yield 

where the Q" are defined by 

and 

If the radii of inner and outer CDWs of a coupled CDW system, a and b, satisfy 
a e r, e b, it becomes a coupled 2D-ID CDW system for the reasons discussed above. 
Such systems are expected to have characteristics of Coulomb drag which are different 
from those exhibited by both the coupled ID-ID system and the 2D-2D system. Because 
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Figure 2. The dependence on Q and Q of the integrand in equation (15) for 7 = 13 K 

*- Y 0.0Z5 7 

d=275 
I- 0.005 

* 
A =375 

5 10 15 20 25 30 
'e 0.000 

Tempera ture  (K)  
Figure 3. A p!ot of the theoretical values of l / ( r ~ T ' )  as functions of temperature, ford = 175, 
275 and 375 A. 

a c r,, mo = 0. so both m and Am are equal to zero. The summation over Am in equation 
(27) can be cancelled while we set Am = 0 in it. And it may be proved that when Am = 0, 
for both ID and 2D CDW [9], 

10 otherwise 

where 
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in which y: is defined by equation (30). In particular, for the inner CDW m = 0 since 
a < r,, and thus 

Q : * = I Q ~ ~ ~ Q I .  (37) 

By using equations (35H373, it may be proved that 

where 

nmox = a:, = IQz+ QyFl 

and 

(39) 

Attention must be paid to the fact that when Q = Qmin = (I - $)/Z, amin = amox. So 
we have r(Q. a)  = 0 when Q < Qmin. Obviously for coupled 2D-1D CDWs, r ( Q ,  a) 
is a Gindependent constant in the region amin < < a,, and zero otherwise. Therefore 
we can also complete the integration over C2 in equation (16) analytically, and get the 
expression for the momentum relaxation rate: 

(41) 

The parameters used in the numerical calculation are the electron area densities in the 
The effective mass p* = 0.067mo and the two CDWs, n l  = nz = 1.5 x 10" 

dielectric constant K = 13. 

5.1. The momentum relaxation rate of the coupled 2 0 - 1 0  CDWs 

First of all, we study the momentum relaxation rate of the barrier-coupled 2D-1D CDWs 
of which the radii of inner and outer CDWs satisfy a < r, -? b [ll]. We take the radius 
of the inner CDW to be a = 80 A. Then the Coulomb drag behaviour of barrier-coupled 
2D-1D CDWs can be yielded by carrying out the integration over Q and summation over 
m in equation (41). 

We show in figure 2 the dependence for Q and Q of the integrand in equation (16). Note 
that the integrand vanishes in the region of reduced wave vector Q c e,,,;. = (1 - y;)/2. 

Figure 3 shows the numerical results for l / ( t ~ T ~ )  as functions of temperature in the 
region T = 5-30 K, calculated from equation (41) for three different values of the separation 
distances, d = 175, 275 and 375 A. The maximum values of l / ( r ~ T ~ )  occur at around 
T = 12 K which is about nine times less than T,. 
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Figure 4. The interaction term QIeh(Q)I2 (the thick full curve) and the phase-space term 
F T ( Q )  for temperatures T = 12 K (the thin full curve), T = 5 K (the chain curve) and 
T = 20 K (the shon-dashed curve). 

2.0 2.5 3.0 3.5 4.0 4.5 

d ( l f * m )  
Figure 5. A plot of &/[r~(T,,)'l as a function of distance d .  

To gain a better understanding of the physics underlying the nonmonotonic temperature 
dependence of l / ( r ~ T ~ ) ,  following the method of Jauho and Smith [5],  we rewrite 
equation (41) as 
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where FT(&)  is the result of the CZ integration in equation (16) which has been completed 
analytically. The two factors in the Q-integral of equation (42) have different physical 
origins: the Q[+o(Q)12-term describes the Q-dependence of the interaction, while the 
&(&)-section is related to the phase space corresponding to thr. momentum transfer TI&. 
These two terms are plotted as functions of Q in the case where d = 275 A in figure 4. 
The function Fr(Q)  is shongly temperature dependent; the maximum peak height changes 
as the temperature changes. At a certain temperature (T = 12 K in the present example), 
the peaks of the two terms coincide and reach maximum overlap, resulting in the maximum 
value of ~ / ( < D T ~ ) .  

In figure 5, the dependence of d3/[Z~(Tm,)4] on the separation distance d is plotted. 
The full curve shows the numerical result calculated from equation (41). The short-dashed 
curve is given by a nearly periodic analytical function which is used to fit the numerical 
result: 

where C = 1.70 x 10-I8 m3 s-’ R4 , d 0 = 117 A. and q = (-l)r(d-do)l(dr/2)1, in which 
rxl means the integral part of n, and the period 

dT = r0h+l) - r0@) (44) 
where the r t ’  are a series of special radii of a CDW which satisfy the condition 

in which n is an integer. 
The chain curve is used to denote the numerical value of d3/[q,(T,,x)4] divided by its 

analytical value given by equation (43). Its gentle variation versus distance d proves that 
the numerical value is well fitted by the analytical one. 

Figure 6, upper panel, shows the plot of TmaL as function of d, and figure 6, lower 
panel, shows the plot of the logarithm of T,, as a function of the logarithm of d (A). The 
short-dashed curves in figure 6 show the results calculated from an analytical function used 
to simulate roughly the numerical results: 

where dr is defined by equation (44). The chain line in figure 6, lower panel, is the best-fit 
line obtained using a linear fitting equation of which the slope is a = -0.14. 

The physical origin of the oscillatory behaviour of the momentum relaxation rate as 
shown in figure 5 is the oscillation of the Fourier transform of the effective interaction 
+Am(q). We can see from equation (24) that the strength of the screening effect in a 
coupled CDW system is determined by A defined in equation (25). When the radius of the 
inner CDW, a, is fixed, A is an oscillatory function of b (or d = b -a) as the result of the 
oscillation of a dimensionless screening wave vector in the Fermi-Thomas approximation, 
qfib,  with respect to b (or d)  with the oscillation period dr. Since according to equations 
(26) and (45), in the range of a period, q,“b tends to infinity when b - rt’ tends to O+ (i.e., 
k7)b - n tends to O+), then it attenuates quickly as the value of b - r$’ increases and qfLb 
reaches its minimum value when b - r,$’+l) tends to 0- (i.e., ky’b - (n + 1) tends to 0-). 
As a result, @ ~ , ( q )  and the momentum relaxation rate show oscillatory behaviour. It can 
he calculated from equations (22) and (45) that r t ’  = 82.187, 192.1,16, 297.792, 402.340 
and 506.390 .& when n = 1, 2, 3, 4 and 5, so b = r t ’  when the separation distance d is 
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equal to 2.187, 112.116, 217.792, 322.340 and 426.390 A. We can see from figure 5 that 
when d increases and passes across these values from left to right, the momentum relaxation 
rate jumps rapidly from its peak values to zero, then increases monotonically again as d 
increases until the next jumping point is reached. 

5.2. The momentum relaxation rate of the barrier-coupled 20-20 CDWs and the 
transition behaviour on going from coupled 20-ID to coupled 20-20  CDWs 

Finally, we discuss the Coulomb drag resistivity between a 2D CDW and a 2D CDW, and 
the transition behaviour of Coulomb drag on going from coupled ZD-ID CDWs to coupled 
2D-2D CDWs. We consider a coupled CDW system of which the radii of the inner and 
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outer CDWs, a and b, are both greater than r,. Such of systems are expected to have 
characteristics of Coulomb drag similar to those of bmier-coupled 2D-2D planes. In the 
first example, we take a = 150 8, and b = 350,375 and 475 8, while maintaining the values 
of all the other parameters. This corresponds to m0 = 2, m' = 3, 3 and 4 and Am = 0, 
f l  zk2 in equations (27) and (32) from which si' can be calculated as a functions of T 
and d. 

8 . 0 ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5 10 15 20 25 30 
Temperature (K) 

Figure 7. A plor of U(rDT2) as a function of temperatu-re in the range fro? T = 0 to 30 K for 
different values of the distance, d = 200,225 and 215 A, when n = 150 A. 

In figure 7 we have plotted 1/(rDT2) as a function of temperature in the range from 
T = 0 to 30 K for different values of the distance, d = 200, 225 and 275 A. The 
maximum values of l / ( r ~ T ' )  occur at around T,,, N 6 K. This behaviour is in accord 
with the characteristics of momentum relaxation rates in barrier-coupled 2D-2D planes 
as shown in figure 3 of [5] and figure 3 of  [IO] where Tnax is roughly equal to 10 K 
and 2 K respectively. In the case where d = 225 A, for coupled 2D-2D CDWs, the 
value of I / ( T D T , , ~ )  N 4.2 x lo7 s-I K-', which is about 20 times bigger than that 
of the experimental data of the coupled 2D-2D plane given in [lo]. We can see from 
these results that when we increase the radius of the inner CDW of coupled CDWs from 
a = 80 A (<rJ to a = 150 8, (>rc), the characteristic behaviour of the momentum 
relaxation rate as a function of temperature transforms from 2D-ID behaviour to typical 
2D-2D behaviour which is maintained untiI rather bigBer values of a are reached. For 
example when a = 600 A, d = 225 8, and d = 275 A, the curves of l / ( r ~ T ' )  versus 
temperature T have maximum values at around T,,, = 2 K. 

Figure 8 is a plot of d2"/[r~(T,,.,)2J as a function of distance d in the case where 
a = 600 8,. Similarly to the results from figure 5 for coupled 2D-1D CDWs, equation 
(43) with C = 6.6 x lo-'' mZ4 s-' K-', do = 114 A and dr determined by equation (44) 
can be used to fit roughly the numerical results plotted in figure 8; i.e., for coupled 2D-2D 
CDWs, z;'/Ti, is roughly proportional to d-2.4 times a nearly periodic function of d 
with period dr.  This is quite different from the d-Z4-dependence of z;'/Ti, in coupled 
2D-2D planes, because, according to the results of [SI, r;' and T,,, are proportional 
roughly to d-4 and d-O.* respectively. So r;'/Tim is roughly proportional to d-2.4. This 
discrepancy originates from the quantization of the circular motion round the cylindrical 
symmetry axis. 

To study the behaviour of the Coulomb drag of coupled CDWs in the region where 
a N r,, in figure 9 we plot z;'/T" as function of T for differential values of n for both 
a = 110 A and a = 120 8, in the case where d = 175 A. The dashed curves are used to 
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5 

Figure 8. A plot of d3/[ro(Tm.r)Z] as a function of distance d .  The full curve shows the 
numerical result calculated from equation (32). The shortdashed curye is given by a nearly 
periodic analytical function, equation (43), which is used to fit the numerical result. 

rc 
E 
Y 
0 m c 

d = 1 7 5  A 
- 

0 5 10 15 20 25 

T e m p e r a t u r e  (K) 
Figure 9. A plot of I/(rDT") as a funetion of T for different values of n for a = I10 A and 
a = 120 A in the case where d = 175 A. 

denote the results of taking a = 110 A and the full curves are those for a = 120 A. It is 
clear that over the whole ranges of temperatures, when a = 110 and 120 A the momentum 
relaxation rates, r;', are roughly proportional to T'.' and T2.4 respectively, while when a 
2150 A the rate is proportional to T'. 

6. Conclusion 

In this paper we have discussed the rate of momentum relaxation between two electron 
gases confined in two cylindrical delta quantum wells with a common cylindrical symmetry 
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axis which are coupled via screened Coulomb interaction. The results are that for coupled 
2D-1D CDWs the momentum relaxation rate, r;', is approximately proportional to T4, 
while for coupled 2D-2D CDWs it":; proportional to 'T2, which is in accord with the 
characteristic behaviour of the momentum relaxation rate in  coupled 2D-2D planes. In the 
transition region from coupled 2D-1D to 2D-2D CDWs, z;' is proportional to T" with 
II reducing from 4 to 2 gradually. In addition, quite different from the d-z.4-dependence 
of the momentum relaxation rate divided by T2u in coupled 2D-2D planes, due to the 
quantization of the circular motion round the cylindrical symmetry a&, for coupled 2D-1D 
CDWs, the momentum relaxation rate divided by T,,u is approximately proportional to d-3 
times a nearly periodic function of d with period dT-while for coupled 2D-2D CDWs, 
the momentum relaxation rate divided by T,.ax is approximately proportional to d-2.4 times 
a nearly periodic function of d with period dr.  

The calculation of the Coulomb drag resistivity under a magnetic field along the 
cylindrical symmetry axis (the z-direction) in coupled cylindrical delta quantum wells is 
under way. 
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